If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-120t-2=0
a = 16; b = -120; c = -2;
Δ = b2-4ac
Δ = -1202-4·16·(-2)
Δ = 14528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14528}=\sqrt{64*227}=\sqrt{64}*\sqrt{227}=8\sqrt{227}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-8\sqrt{227}}{2*16}=\frac{120-8\sqrt{227}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+8\sqrt{227}}{2*16}=\frac{120+8\sqrt{227}}{32} $
| H(t)=-16t+120t+2 | | 9=x/3+6 | | 172=107-u | | 210-x=48 | | u/4-7=-13 | | 31=7-3u | | 44=(2x+1)(x+3)(1/2) | | 10x+15-9×=10 | | 10x+3-9×=10 | | 44=(2x+1)(x+3)/2 | | 5=100-5x | | 25=50-5x | | 2x+3=5/6 | | 26=50-2x | | 2x+3(2×+2/3)=18 | | 1*(x+6)-(4-x)2=0 | | 4x+8/8=4x+6/3 | | (1)*(6+x)-(4-x)*(2)=0 | | x*5+4=10 | | 6x-18=-18 | | (5x+1)^2-(5x-3)(5x+3)=30 | | 4(5-2x)=3+1/2 | | -23=3/7i | | 9/x=7/13 | | 2x+5+4x-3x-3=19+10+5x | | 54=14-8x/7 | | 41=25-4x/5 | | -16+9x/4=29 | | .132=x+(.122-x)*1.18 | | X+3/4+5*(7x+9)/3=3(4x+3)/12-7/2 | | (x+4)-12=0 | | x+.5x=1600 |